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Introduction:

We are interesting in numerically solving well-posed initial-boundary-value

problems






















∂u

∂t
= L(u,x, t), t > 0, x ∈ Ω,

u(x, t) = u0(x), t = 0, x ∈ Ω,

B(u,x, t) = 0, t > 0, x ∈ ∂Ω.

in complex three-dimensional domains Ω ∈ R
3.

♦ We use overlapping (overset/Chimera) grids to discretize the domain Ω and

finite-difference or finite-volume methods to approximate the PDE.

♦ If the solutions exhibit localized multiscale behaviour such as sharp fronts,

interfaces, shocks, reaction zones etc. then the use of adaptive mesh refinement

(AMR) can reduce the time-to-solution or allow higher-resolution results for

given computational resources.
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Background: Overlapping grids for solving Partial Differential Equations

• A set of structured grids that overlap.

• Solutions matched by interpolation.

• Body fitted grids permit accurate treatment

of boundary conditions.

• A grid generator (Ogen) is used to

automatically connect component grids, but

component grid generation is not yet fully

automatic.

• Grids can be rapidly generated as boundaries

move.

• Efficient high-order accurate methods are

possible.

• Algorithms must take into account multiple

grids and interpolation points.
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� � interpolation

�� unused

� � ghost point

Mapping: x = G2(r)

Claim: If designed properly, an algorithm for overlapping grids can be

asymptotically as fast and memory efficient as an algorithm for a single Cartesian

grid.
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Block Structured Adaptive Mesh Refinement and Overlapping Grids

♦ Refinement patches are generated in the parameter space of each

component grid (base grid).

♦ Refinement patches are organized in a hierarchy of refinement levels.

♦ Error estimators determine where refinement is needed.

♦ AMR grid generation (Berger-Rigoutsos algorithm) builds refinement patches based

on the error estimate.

♦ refinement grids may interpolate from refinement grids of different base grids.

♦ The key issue is efficiency.

refinement level 1

refinement level 2

base grids
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Parallel Adaptive Mesh Refinement on Overlapping Grids

We have recently developed the parallel capabilties for AMR on overlapping grids.

Parallel Issues:

♦ Overlapping grids: parallel grid generation for the initial grid; updating

interpolation points on AMR grids, parallel interpolation.

♦ AMR: Error-estimation, regridding, interpolation.

♦ Parallel Distributions of Arrays and Load balancing

♦ I/O and Graphics

Reference:
WDH., D. W. Schwendeman, Parallel Computation of Three-Dimensional Flows using

Overlapping Grids with Adaptive Mesh Refinement, UCRL-JRNL-236681, Submitted for

publication, 2007.

WDH., D. W. Schwendeman, Moving Overlapping Grids with Adaptive Mesh Refinement for

High-Speed Reactive and Nonreactive Flow, J. Comp. Phys. 216 (2005) 744-779.
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Distributing Overlapping and AMR grids in Parallel

G1

G2

G3

G4

p=0

p=1

p=3

p=4

p=5

p=4

p=6p=7

Each base grid or refinement grid can be distributed over a contiguous range of

processors. In this example the base grid G1 is distributed over processors [0, 1], the

base grid G2 over processor [4], the refinement grid G3 over processors [3, 4, 5] and the

refinement grid G4 over processors [6, 7].
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The AMR Time-Stepping Algorithm

PDEsolve(G, tfinal)

{ t := 0; n := 0;

un
i

:= applyInitialCondition(G);

while t < tfinal

if (n mod nregrid ≡ 0) // rebuild the AMR grids

ei := estimateError(G,un
i
);

G∗ := regrid(G, ei);

u∗

i
:= interpolateToNewGrid(un

i
,G,G∗);

G := G∗; un
i

:= u∗

i
;

end if

∆t := computeTimeStep(G,un
i
);

un+1
i

:= advancePDE(G,un
i
, ∆t); // take a time step

interpolate(G,un+1
i

); // interpolate overlapping grid points

applyBoundaryConditions(G,un+1
i

, t + ∆t);

t := t + ∆t; n := n + 1;

}
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Error-Estimation

The error-estimator we generally use is

ei =

m
X

k=1

ek,i + τi , (1)

where the error in solution component k (e.g. ρ,u,v,...) is estimated as weighted sum

of first- and second-order undivided differences,

ek,i =
1

3

3
X

α=1

„

c1

sk

|∆0αUk,i| +
c2

sk

|∆+α∆−αUk,i|

«

. (2)

When solving the reactive Euler equations, we add τi, which is an estimate of the

truncation error in the sub-cycled chemistry terms.

♦ The error-estimator is smoothed using a Jacobi iteration on the entire overlapping

grid so that the error propagates onto neighbouring grids. Refinement grids thus

include a buffer region.
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AMR Regriding

♦ Every few times steps (e.g. every 8 times steps) the error is estimated and a new set

of AMR grids are found. We use a modified Berger-Rigoutsos algorithm.

AMR Interpolation

♦ AMR boundary-interpolation : during each time step, ghost points on AMR grid

boundaries are interpolated from grids at the same level or a coarser level.

♦ Refinement grid transfer step : when the locations of the AMR grids are

recomputed, the solution values from the new grid-hierarchy are interpolated from the

solution values on the old grid-hierarchy

Remark: Our first implementation of AMR regriding and interpolation has great room

for improvement to reduce the number of messages being passed.
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Load-Balancing

The aim of load-balancing is to distribute the computational work-load amongst the

processors in a nearly even fashion.

Constraints:

♦ Each grid can be distributed across a contiguous range of processors (a constraint

imposed by the version of Multiblock PARTI that we use).

The Algorithm is based on a best fit decreasing bin-packing algorithm:

♦ starting from the largest grid, split the grid into a number of regularly shaped pieces

of some estimated optimal size.

♦ pack the pieces of the grid onto a contiguous set of processors. Go to the next

largest grid and repeat.

♦ Check the final load balance. If poorly balanced, repeat the process but split the

grids into more pieces.
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Load-Balancing

Notes:

♦ The target load balance can always be achieved by splitting each grid across all

processors.

♦ Communication costs are not explicitly taken into account.

♦ Any variation in computational cost per grid point is currently not taken into account.
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Validation: Solving an advection-diffusion problem with parallel AMR

We consider the solution of the initial-boundary-value problem for the

advection-diffusion equation:






















∂u

∂t
+ a · ∇u = ν∆u + f(x, t), t > 0, x ∈ Ω,

u = u0(x), t = 0, x ∈ Ω,

u = g(x, t), t > 0, x ∈ ∂Ω,

where u = u(x, t) is a scalar function, a = a(x, t) ∈ R
3 is a given velocity, ν > 0

is a constant diffusivity and f(x, t) is a given forcing function.

These are discretized on curvilinear grids using the mapping-method, resulting in

the system of ODEs,

d

dt
Ui(t) + a · ∇hUi(t) = ν∆hUi(t) + fi(t),

These equations are advanced in time using a second or fourth-order

Runge-Kutta method, RK2 or RK4.
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The Method of Analytic Solutions (aka Twilight-zone flow)

For the advection-diffusion IBVP
8

>

>

>

>

<

>

>

>

>

:

∂u

∂t
+ a · ∇u = ν∆u + f(x, t), t > 0, x ∈ Ω,

u = u0(x), t = 0, x ∈ Ω,

u = g(x, t), t > 0, x ∈ ∂Ω,

We can make any smooth function ū(x, t) an exact solution by choosing

f(x, t) = ūt + a · ∇ū − ν∆ū, u0(x) = ū(x, 0),

g(x, t) = ū(x, t), for x ∈ ∂Ω.

We often choose ū(x, t) to be a low degree polynomial since our approximations are

often exact in this case on Cartesian grids.
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A good exact-solution for tesing AMR is the translating pulse

ū(x, t) = c0 exp
˘

− (|x − xc(t)|/c1)
2¯

,

xc(t) = x0 + v0t.

Above: a pulse moving through a sphere-in-a-box grid. Refinement grid boxes are shown.
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Advection-diffusion: moving pulse in a sphere-in-a-box

Notation: G
(j,l)
s : j: base grid resolution factor, l: number of additional refinement levels.

nr : refinement ratio, Ej,1 : maximum error.

Grid nr Nproc Nstep Nregrid Ngrid Npoint Ej,1

G
(1,1)
s 2 32 48 24 (3, 23) 2.0e+5 2.84e−2

G
(2,1)
s 2 32 120 60 (3, 49) 1.1e+6 6.91e−3

G
(3,1)
s 2 32 376 188 (3, 128) 6.7e+6 1.70e−3

Parallel AMR results for runs involving the sphere-in-a-box grid with the moving pulse solution.

Convergence rate σ = 2.0 (second-order accurate)

Grid nr Nproc Nstep Nregrid Ngrid Npoint Ej,`

G
(1,2)
s 2 8 126 64 (13, 53) 6.0e+5 7.25e−3

G
(1,2)
s 2 32 126 64 (13, 53) 6.0e+5 7.25e−3

G
(1,1)
s 4 16 187 47 (3, 21) 6.6e+5 7.25e−3

G
(1,1)
s 4 32 187 47 (3, 21) 6.6e+5 7.25e−3

G
(2,1)
s 2 1 120 60 (3, 49) 1.1e+6 6.91e−3

G
(2,1)
s 2 32 120 60 (3, 49) 1.1e+6 6.91e−3

G
(4,0)
s – 8 166 – (3, 3) 4.9e+6 6.76e−3

G
(4,0)
s – 32 166 – (3, 3) 4.9e+6 6.76e−3

The effective resolution is the same for all runs and we observe that the numerical errors, Ej,`,

are approximately equal.
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Solving the reactive Euler equations.

∂u

∂t
+

∂

∂x1
F1(u) +

∂

∂x2
F2(u) +

∂

∂x3
F3(u) = H(u),

where

u =

2

6

6

6

6

6

4

ρ

ρv

E

ρs

3

7

7

7

7

7

5

, Fn =

2

6

6

6

6

6

4

ρvn

ρvnv + pen

vn(E + p)

ρvns

3

7

7

7

7

7

5

, H =

2

6

6

6

6

6

4

0

0

0

ρR

3

7

7

7

7

7

5

.

E =
p

γ − 1
+

1

2
ρ|v|2 + ρq,

♦ The numerical approximation uses a second-order extension of Godunov’s method.

♦ The stiff source term in the reactive case is handled using a Runge-Kutta

error-control scheme.
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AMR grids for shock diffraction by a quarter sphere

Density and AMR grids for the quarter-sphere problem at t = 0.6 (left) and t = 1.4

(right). (The grid is coarsened by a factor of 4 for illustrative purposes.)

Notes: Euler equations computed with cgcns: two-levels of refinement factor 2, 32

processors, from 6 to 1827 grids, a maximum of 55 million grid points.
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Density on the sphere

h = 1
40

, 1
80

, 1
160

, 1
320

G
(b=2,l=1,r=2)
q , h = 1

40

G
(b=4,l=1,r=2)
q , h = 1

80
G

(b=4,l=2,r=2)
q , h = 1

160

Grid convergence study for shock diffraction by a quarter sphere
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Parallel AMR, shock diffraction by a sphere - strong scaling results

k Grid N
(k)
point

N
(k)
proc N

(k)
point

/N
(k)
proc N

(k)
step Tk Sk

0 G
(4,0)
q 2.01e+6 1 2.01e+6 617 15.2 1.00

1 G
(4,0)
q 2.01e+6 2 1.00e+6 617 7.77 0.98

2 G
(4,0)
q 2.01e+6 4 5.02e+5 617 3.96 0.96

3 G
(4,0)
q 2.01e+6 8 2.51e+5 617 2.09 0.91

4 G
(4,0)
q 2.01e+6 16 1.26e+5 617 1.09 0.87

5 G
(4,0)
q 2.01e+6 32 6.27e+4 617 0.587 0.81

6 G
(4,0)
q 2.01e+6 64 3.14e+4 617 0.341 0.70

Strong scaling results with no AMR. Tk = CPU time in seconds per step. The parallel scaling
factor Sk should be 1 for perfect parallel scaling.

k Grid N
(k)
point

N
(k)
proc N

(k)
point

/N
(k)
proc N

(k)
step Tk Sk

0 G
(2,1)
q 1.61e+6 1 1.61e+6 645 11.8 1.00

1 G
(2,1)
q 1.61e+6 2 8.05e+5 645 6.23 0.95

2 G
(2,1)
q 1.61e+6 4 4.02e+5 645 3.23 0.91

3 G
(2,1)
q 1.61e+6 8 2.01e+5 645 1.82 0.81

4 G
(2,1)
q 1.61e+6 16 1.01e+5 645 1.02 0.72

5 G
(2,1)
q 1.61e+6 32 5.03e+4 645 0.591 0.62

Strong scaling results with AMR. The current parallel AMR interpolation functions send too
many small messages; these need to be merged.
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Cgcns parallel AMR example: detonation initiation in a T-shaped pipe

Notes: Reactive-Euler equations computed with cgcns: one level of refinement factor 4,

4930 time steps, 48 processors, from 5 to 682 grids, a maximum of 100 million grid

points (effective resolution of 400 million).
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h = 1
80

l = 1, nr = 4

h = 1
160

l = 1, nr = 4

h = 1
240

l = 1, nr = 4

Grid convergence study for a detonation in a T-pipe
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Summary

• We have developed an approach for solving time dependent PDEs using

overlapping grids and AMR on parallel, distributed-memory computers.

• Each base grid or refinement grid can be independently distributed across one

or more processors. A modified bin-packing algorithm is used as the

load-balancer.

• The accuracy of the approach was validated by solving advection-diffusion

equation with the method of analytic solutions.

• The approach was further validated by solving the Euler-equations and reactive

Euler-equations.

• The method showed reasonably good parallel scaling up to 64 processors.

Further work is required to the initial implementation to reduce communication

costs.

• Future work: moving grids and AMR in parallel.
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